organic compounds

Z = 2

Cu $K\alpha$ radiation

 $0.46 \times 0.18 \times 0.11 \ \mathrm{mm}$

11294 measured reflections

4430 independent reflections

3313 reflections with $I > 3\sigma(I)$

 $\mu = 0.73 \text{ mm}^{-1}$

T = 120 K

 $R_{\rm int} = 0.034$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl 4,4'-dihydroxy-3,3'-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene)}dibenzoate

Augusto Rivera,^a* Diego Quiroga,^a Jaime Ríos-Motta,^a Karla Fejfarová^b and Michal Dušek^b

^aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and ^bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic

Correspondence e-mail: ariverau@unal.edu.co

Received 23 September 2011; accepted 26 September 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.111; data-to-parameter ratio = 13.7.

The heterocyclic ring in the title compound, $C_{27}H_{34}N_2O_6$, has an envelope conformation on one of the bridgehead C atoms $[Q(2) = 0.4487 (19) \text{ Å} \text{ and } \varphi = 291.3 (2)^{\circ}].$ Two strong intramolecular O-H···N hydrogen bonds stabilize the molecular conformation. The benzoate groups differ in the relative orientations of the ethyl groups, as quantified by the values of the C–O–C–C torsion angles of -86.5(2) and $-178.97 (17)^{\circ}$. The carbonyl groups are nearly coplanar with the benzene rings, forming C-C-C-O torsion angles of 0.9 (3) and 3.4 (3) $^{\circ}$. The crystal structure is stabilized by weak intermolecular C-H···O interactions.

Related literature

For related structures, see: Rivera et al. (2010, 2011a,b). For the background to this work, see: Van den Enden & Geise (1981); Geise et al. (1971). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).

Experimental

Crystal data C27H34N2O6 $M_r = 482.6$

Triclinic, $P\overline{1}$ a = 8.1132 (4) Å

b = 10.9796 (7) Å
c = 15.2450 (8) Å
$\alpha = 89.580 \ (5)^{\circ}$
$\beta = 81.028 \ (4)^{\circ}$
$\gamma = 70.028 \ (5)^{\circ}$
$V = 1259.19 (13) \text{ Å}^3$

Data collection

Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\min} = 0.752, T_{\max} = 1$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.111$	independent and constrained
S = 1.64	refinement
4430 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
323 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H30\cdots N1$ $O6-H60\cdots N2$	0.89(3) 0.91(2)	1.82(3) 1.82(3)	2.663(2) 2.669(2)	156.9 (19) 154 (3)
$C2 - H2 \cdots O1^{i}$	0.96	2.58	3.362 (2)	134 (5)
$C3 - H3 \cdots O4^{n}$ $C8 - H8b \cdots O1^{i}$	0.96 0.96	2.57 2.57	3.436 (2) 3.336 (2)	151 137
$C22 - H22 \cdots O3^{iii}$	0.96	2.44	3.351 (2)	159
Symmetry codes:	(i) $-x + 1, -y$	+1, -z; (ii)	-x + 1, -y + 1	, -z + 1; (iii)

x + 1, y - 1, z.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5654).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Geise, H. J., Buys, H. R. & Mijlhoff, F. C. (1971). J. Mol. Struct. 9, 447-454.
- Murray-Rust, P. & Riddell, F. G. (1975). Can. J. Chem. 53, 1933-1935. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.

- Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). *Acta Cryst.* E66, 0931.
- Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011a). Acta Cryst. E67, 02627-02628.
- Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011*b*). *Acta Cryst.* E67, o2297.
- Van den Enden, L. & Geise, H. J. (1981). J. Mol. Struct. 74, 309-320.

Acta Cryst. (2011). E67, o2817-o2818 [doi:10.1107/S1600536811039559]

Diethyl 4,4'-dihydroxy-3,3'-{[(3a*RS*,7a*RS*)-2,3,3a,4,5,6,7,7a-octahydro-1*H*-1,3-benzimidazole-1,3-diyl]bis(methylene)}dibenzoate

A. Rivera, D. Quiroga, J. Ríos-Motta, K. Fejfarová and M. Dusek

Comment

The title compound (I) was obtained from ethyl *p*-hydroxybenzoate and (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo[8.8.1.1^{8,17}.0^{2,7}.0^{11,16}]icosane by a Mannich type reaction as an extension of our work on the structural studies of *di*-Mannich bases with the 2,3,3a,4,5,6,7,7a-octahydro-1*H*-1,3-benzimidazole chiral core (Rivera *et al.*, 2010; Rivera *et al.*, 2011*a,b*).

In the molecule of the title compound (Fig. 1), *x*-rays analysis indicated that in the cyclohexane ring the C7—C2—C3—C4 endocyclic torsion angle is increased from the normal 55° to 65.6 (2) °. The endocyclic N1—C2—C3—N2 torsion angle in the heterocyclic ring is -45.57 (16) °, which is in the order of the maximum value for torsion angles in five-membered rings (Van den Enden & Geise, 1981). These results confirm the existence of a puckering of the perhydrobenzimidazole moiety, where the 1,2-cyclohexanediamine fragment adopts a chair conformation with shorter endocyclic bond angles [C3—C4—C5, 106.90 (17)°; C2—C7—C6, 106.70 (17)°] and longer bond angles [C4—C5—C6, 112.75 (15); C5—C6—C7; 112.22 (17)°] respect to the normal bond angles [111.4 °. Geise *et al.*, 1971] in a ideal chair conformation. The heterocyclic ring has a envelope conformation on C3 (Q(2) = 0.4487 (19) Å, φ = 291.3 (2)°) (Cremer & Pople, 1975) with endocyclic bond angles between 100.86 (13)° and 106.30 (15)° which are shorter respect the tetrahedrical normal bond angles.

The benzoate moieties differ in the relative orientations of the ethyl groups, Fig. 1, as quantified in the values of the C15—O2—C16—C17 and C25—O5—C26—C27 torsion angles of -86.5 (2) and -178.97 (17)°, respectively, which indicate different orientations with respect to the plane of benzoate moiety. The carbonyl groups are nearly coplanar with the benzene rings forming C10—C11—C15—O1 and C20—C21—C25—O4 torsion angles of 0.9 (3)° and 3.4 (3)° respectively. Bond angles around the carbonyl C atom deviate slightly from 120°. The C—C bond lengths between the atoms in the sequences C9, C10 and C12, C13, [1.385 (2) and 1.382 (2) Å] respectively are similar whereas the C10—C11 [1.400 (3) Å] and C11—C12 [1.392 (3) Å], bond lengths are slightly longer because of the influence of the polar C=O group while the C9—C14 [1.359 (2) Å] is shorter and C13—C14 [1.392 (3) Å] is slightly longer because of the influence of the O—H hydrogen bonded groups.

In the crystal, adjacent molecules are connected *via* intermolecular C—H···O hydrogen bonds, forming an one-dimensional chain which propagates parallel with the *c* axis (Fig. 2) where one intermolecular hydrogen-bonding R^2_2 (14) (Bernstein *et al.* 1995) graph-set motifs is generated (Fig 3).

Experimental

To a dioxane:water (7 ml) solution of the aminal (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo[8.8.1.1^{8,17}.0^{2,7}.0^{11,16}]icosane (276 mg, 1.00 mmol) prepared previously following described procedures

(Murray-Rust & Riddell, 1975), was added dropwise a dioxane solution (3 ml) containing two equivalents of ethyl *p*-hydroxybenzoate (332 mg, 2.00 mmol). The mixture was refluxed for about 10 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 18%, m.p. = 408–410 K). Single crystals of racemic (I) were grown from a chloroform: methanol solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

¹H NMR (CDCl₃, 400 MHz): δ 1.28 (4*H*, m), 1.35 (6*H*, t, ³*J*_{H,H} = 7.2 Hz), 1.86 (2*H*, m), 2.07 (2*H*, m), 2.40 (2*H*, m), 3.56 (2*H*, d, ²*J*_{H,H} = 13.9 Hz, ArCH₂N), 3.56 (2*H*, s, NCH₂N), 4.20 (2*H*, d, ²*J*_{H,H} = 13.9 Hz, ArCH₂N), 4.30 (4*H*, q, ³*J*_{H,H} = 7.2 Hz), 6.83 (2*H*, d, ³*J*_{H,H} = 8.5 Hz), 7.68 (2*H*, d, ⁴*J*_{H,H} = 2.2 Hz), 7.87 (2*H*, dd, ³*J*_{H,H} = 8.5 Hz, ⁴*J*_{H,H} = 2.2 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 23.9, 28.9, 56.0, 60.6, 69.1, 75.6, 116.2, 121.0, 121.8, 130.0, 131.2, 161.8, 166.3.

Refinement

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded C atoms were kept in ideal positions with C–H distance 0.96 Å during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with displacement displacement coefficients $U_{iso}(H)$ set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH– and CH₂- groups.

Figures

Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing of the molecules of the title compound view along the a axis.

Diethyl 4,4'-dihydroxy-3,3'-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a- octahydro-1*H*-1,3-benzimidazole-1,3-diyl]bis(methylene)}dibenzoate

Crystal data

C ₂₇ H ₃₄ N ₂ O ₆	Z = 2
$M_r = 482.6$	F(000) = 516
Triclinic, <i>P</i> T	$D_{\rm x} = 1.272 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Cu K α radiation, $\lambda = 1.5418$ Å
a = 8.1132 (4) Å	Cell parameters from 4486 reflections
b = 10.9796 (7) Å	$\theta = 2.9-67.1^{\circ}$
c = 15.2450 (8) Å	$\mu = 0.73 \text{ mm}^{-1}$
$\alpha = 89.580 \ (5)^{\circ}$	T = 120 K
$\beta = 81.028 \ (4)^{\circ}$	Block, colourless
$\gamma = 70.028 \ (5)^{\circ}$	$0.46 \times 0.18 \times 0.11 \text{ mm}$
$V = 1259.19 (13) \text{ Å}^3$	

Data collection

Agilent Xcalibur	
diffractometer with an Atlas (Gemini ultra Cu) de-	4430 independent reflections
tector	
Radiation source: Enhance Ultra (Cu) X-ray Source	3313 reflections with $I > 3\sigma(I)$
mirror	$R_{\rm int} = 0.034$
Detector resolution: 10.3784 pixels mm ⁻¹	$\theta_{\text{max}} = 67.2^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Rotation method data acquisition using ω scans	$h = -8 \rightarrow 9$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)	$k = -13 \rightarrow 12$
$T_{\min} = 0.752, T_{\max} = 1$	$l = -18 \rightarrow 18$
11294 measured reflections	

112)+ medsured reflect

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.043$
$wR(F^2) = 0.111$
<i>S</i> = 1.64
4430 reflections

323 parameters

0 restraints

130 constraints

H atoms treated by a mixture of independent and constrained refinement Weighting scheme based on measured s.u.'s $w = 1/[\sigma^2(I) + 0.0009I^2]$ $(\Delta/\sigma)_{max} = 0.005$ $\Delta\rho_{max} = 0.47$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³ Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) Extinction coefficient: 900 (200)

Special details

Experimental. CrysAlisPro (Agilent Technologies, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm

Refinement. The refinement was carried out against all reflections. The conventional *R*-factor is always based on *F*. The goodness of fit as well as the weighted *R*-factor are based on *F* and F^2 for refinement carried out on *F* and F^2 , respectively. The threshold expression is used only for calculating *R*-factors *etc.* and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the *SHELX* program.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.80490 (18)	0.62458 (15)	-0.09060 (10)	0.0383 (6)
02	0.86246 (17)	0.80304 (15)	-0.05677 (10)	0.0363 (6)
03	0.16819 (17)	0.90030 (14)	0.22196 (9)	0.0305 (5)
O4	0.88617 (18)	0.26784 (14)	0.50761 (10)	0.0336 (5)
05	1.05002 (16)	0.09728 (14)	0.41510 (9)	0.0289 (5)
O6	0.35533 (18)	0.23291 (15)	0.24830 (10)	0.0327 (6)
N1	0.16240 (18)	0.65935 (16)	0.21904 (10)	0.0230 (6)
N2	0.20550 (18)	0.47944 (15)	0.31013 (10)	0.0223 (5)
C1	0.2970 (2)	0.5617 (2)	0.26184 (14)	0.0301 (7)
C2	-0.0010 (2)	0.62702 (18)	0.23985 (12)	0.0215 (6)
C3	0.0186 (2)	0.56664 (18)	0.32802 (12)	0.0212 (6)
C4	-0.1214 (2)	0.5040 (2)	0.35509 (13)	0.0251 (7)
C5	-0.3031 (2)	0.6115 (2)	0.36049 (13)	0.0284 (7)
C6	-0.3246 (2)	0.6841 (2)	0.27465 (13)	0.0289 (7)
C7	-0.1753 (2)	0.7398 (2)	0.24635 (13)	0.0263 (7)
C8	0.2195 (2)	0.66840 (19)	0.12354 (13)	0.0247 (7)
C9	0.3493 (2)	0.74075 (18)	0.10787 (12)	0.0220 (6)
C10	0.5003 (2)	0.69903 (19)	0.04363 (13)	0.0237 (7)
C11	0.6112 (2)	0.77285 (19)	0.02585 (12)	0.0237 (7)
C12	0.5683 (2)	0.89060 (19)	0.07296 (12)	0.0243 (7)
C13	0.4197 (2)	0.93306 (19)	0.13820 (13)	0.0252 (7)
C14	0.3118 (2)	0.85782 (19)	0.15638 (12)	0.0235 (7)
C15	0.7677 (2)	0.7236 (2)	-0.04577 (13)	0.0281 (7)
C16	1.0021 (3)	0.7736 (2)	-0.13485 (16)	0.0406 (9)
C17	1.1722 (3)	0.6775 (3)	-0.11692 (17)	0.0510 (11)
C18	0.2807 (2)	0.42669 (18)	0.38978 (13)	0.0234 (6)
C19	0.4584 (2)	0.31872 (18)	0.36541 (12)	0.0216 (6)
C20	0.5969 (2)	0.30589 (19)	0.41223 (12)	0.0226 (6)
C21	0.7585 (2)	0.20349 (18)	0.39261 (12)	0.0223 (6)
C22	0.7816 (2)	0.11224 (19)	0.32436 (13)	0.0248 (7)
C23	0.6454 (2)	0.1236 (2)	0.27718 (13)	0.0275 (7)
C24	0.4850 (2)	0.22611 (19)	0.29689 (13)	0.0239 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C25	0.9003 (2)	0.19539 (18)	0.44524 (13)	0.0233 (7)
C26	1.2010 (2)	0.0805 (2)	0.45986 (14)	0.0289 (7)
C27	1.3504 (2)	-0.0335 (2)	0.41217 (14)	0.0335 (8)
H1a	0.390996	0.509476	0.217022	0.0361*
H1b	0.339167	0.60455	0.303387	0.0361*
H2	-0.009721	0.573115	0.192756	0.0257*
Н3	-0.002172	0.624178	0.378853	0.0255*
H4a	-0.109705	0.438854	0.310572	0.0301*
H4b	-0.109034	0.468638	0.412473	0.0301*
H5a	-0.395371	0.574881	0.374116	0.034*
H5b	-0.319889	0.671905	0.409118	0.034*
H6a	-0.326041	0.626526	0.227901	0.0346*
H6b	-0.437513	0.753203	0.282548	0.0346*
H7a	-0.186338	0.775993	0.189146	0.0316*
H7b	-0.180183	0.802846	0.290901	0.0316*
H8a	0.117525	0.712073	0.096222	0.0296*
H8b	0.274173	0.582741	0.095879	0.0296*
H10	0.529284	0.618178	0.010754	0.0285*
H12	0.642366	0.942596	0.060072	0.0292*
H13	0.390889	1.014069	0.170841	0.0302*
H16a	0.963679	0.740749	-0.183166	0.0488*
H16b	1.021028	0.852032	-0.153732	0.0488*
H17a	1.262112	0.665384	-0.168345	0.0765*
H17b	1.208207	0.708856	-0.067132	0.0765*
H17c	1.156002	0.596333	-0.103694	0.0765*
H18a	0.199541	0.394252	0.426876	0.0281*
H18b	0.295301	0.494797	0.423447	0.0281*
H20	0.581029	0.368816	0.459072	0.0271*
H22	0.892295	0.041523	0.310208	0.0298*
H23	0.66159	0.060322	0.230516	0.033*
H26a	1.172541	0.060967	0.520634	0.0347*
H26b	1.233698	0.156681	0.454438	0.0347*
H27a	1.31469	-0.108441	0.414248	0.0503*
H27b	1.378537	-0.014112	0.351344	0.0503*
H27c	1.453165	-0.050579	0.440505	0.0503*
H3o	0.139 (3)	0.829 (3)	0.2311 (15)	0.0366*
H60	0.280 (3)	0.316 (3)	0.2587 (16)	0.0393*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0355 (8)	0.0382 (9)	0.0379 (9)	-0.0156 (7)	0.0104 (6)	-0.0086(7)
O2	0.0280 (7)	0.0358 (9)	0.0439 (9)	-0.0156 (6)	0.0079 (6)	-0.0004 (7)
O3	0.0272 (7)	0.0266 (8)	0.0324 (8)	-0.0073 (6)	0.0060 (6)	-0.0034 (6)
O4	0.0325 (8)	0.0300 (8)	0.0357 (8)	-0.0042 (6)	-0.0127 (6)	-0.0063 (7)
O5	0.0199 (7)	0.0305 (8)	0.0329 (8)	-0.0025 (6)	-0.0080 (5)	-0.0027 (6)
O6	0.0278 (7)	0.0283 (8)	0.0416 (9)	-0.0046 (6)	-0.0155 (6)	-0.0064 (7)
N1	0.0175 (7)	0.0280 (9)	0.0235 (8)	-0.0080 (6)	-0.0031 (6)	0.0047 (7)

N2	0.0173 (7)	0.0239 (9)	0.0238 (8)	-0.0047 (6)	-0.0034 (6)	0.0040 (7)
C1	0.0193 (9)	0.0345 (12)	0.0359 (12)	-0.0084 (8)	-0.0055 (8)	0.0115 (9)
C2	0.0175 (9)	0.0246 (10)	0.0230 (10)	-0.0082 (7)	-0.0035 (7)	0.0022 (8)
C3	0.0174 (9)	0.0221 (10)	0.0216 (9)	-0.0039 (7)	-0.0024 (7)	-0.0009 (8)
C4	0.0203 (9)	0.0296 (11)	0.0262 (10)	-0.0101 (8)	-0.0027 (7)	0.0042 (8)
C5	0.0193 (9)	0.0357 (12)	0.0294 (11)	-0.0098 (8)	-0.0015 (8)	0.0025 (9)
C6	0.0173 (9)	0.0362 (12)	0.0305 (11)	-0.0058 (8)	-0.0044 (8)	0.0024 (9)
C7	0.0216 (9)	0.0290 (11)	0.0255 (10)	-0.0048 (8)	-0.0042 (8)	0.0045 (8)
C8	0.0244 (9)	0.0255 (10)	0.0230 (10)	-0.0089 (8)	0.0002 (7)	0.0004 (8)
C9	0.0223 (9)	0.0228 (10)	0.0209 (9)	-0.0077 (7)	-0.0041 (7)	0.0038 (8)
C10	0.0247 (9)	0.0232 (10)	0.0224 (10)	-0.0073 (8)	-0.0034 (7)	0.0012 (8)
C11	0.0229 (9)	0.0273 (10)	0.0214 (10)	-0.0091 (8)	-0.0044 (7)	0.0033 (8)
C12	0.0258 (10)	0.0250 (10)	0.0250 (10)	-0.0108 (8)	-0.0081 (8)	0.0068 (8)
C13	0.0284 (10)	0.0218 (10)	0.0253 (10)	-0.0075 (8)	-0.0073 (8)	0.0015 (8)
C14	0.0217 (9)	0.0226 (10)	0.0222 (10)	-0.0032 (7)	-0.0021 (7)	0.0026 (8)
C15	0.0262 (10)	0.0305 (11)	0.0283 (11)	-0.0117 (8)	-0.0022 (8)	0.0041 (9)
C16	0.0318 (11)	0.0473 (14)	0.0405 (13)	-0.0171 (10)	0.0093 (9)	0.0016 (11)
C17	0.0365 (13)	0.0683 (19)	0.0445 (15)	-0.0167 (12)	0.0008 (11)	0.0037 (13)
C18	0.0220 (9)	0.0233 (10)	0.0226 (10)	-0.0051 (7)	-0.0032 (7)	0.0020 (8)
C19	0.0211 (9)	0.0209 (10)	0.0222 (9)	-0.0066 (7)	-0.0027 (7)	0.0030 (8)
C20	0.0239 (9)	0.0214 (10)	0.0209 (9)	-0.0071 (7)	-0.0010 (7)	0.0000 (8)
C21	0.0219 (9)	0.0218 (10)	0.0226 (10)	-0.0075 (7)	-0.0018 (7)	0.0038 (8)
C22	0.0208 (9)	0.0226 (10)	0.0275 (10)	-0.0039 (8)	-0.0017 (8)	-0.0013 (8)
C23	0.0273 (10)	0.0247 (11)	0.0288 (11)	-0.0070 (8)	-0.0038 (8)	-0.0049 (8)
C24	0.0219 (9)	0.0234 (10)	0.0279 (10)	-0.0089 (8)	-0.0064 (8)	0.0010 (8)
C25	0.0229 (9)	0.0207 (10)	0.0256 (10)	-0.0069 (8)	-0.0037 (8)	0.0032 (8)
C26	0.0235 (10)	0.0298 (11)	0.0353 (11)	-0.0081 (8)	-0.0130 (8)	0.0056 (9)
C27	0.0217 (10)	0.0369 (12)	0.0396 (12)	-0.0064 (8)	-0.0067 (9)	0.0036 (10)

Geometric parameters (Å, °)

O1—C15	1.209 (3)	C8—H8b	0.96
O2—C15	1.340 (3)	C9—C10	1.385 (2)
O2—C16	1.463 (3)	C9—C14	1.403 (3)
O3—C14	1.359 (2)	C10-C11	1.400 (3)
O3—H3o	0.89 (3)	С10—Н10	0.96
O4—C25	1.210 (3)	C11—C12	1.392 (3)
O5—C25	1.3364 (19)	C11—C15	1.485 (2)
O5—C26	1.451 (3)	C12—C13	1.382 (2)
O6—C24	1.360 (3)	C12—H12	0.96
О6—Н6о	0.91 (2)	C13—C14	1.393 (3)
N1—C1	1.476 (2)	С13—Н13	0.96
N1—C2	1.474 (3)	C16—C17	1.487 (3)
N1—C8	1.471 (2)	C16—H16a	0.96
N2—C1	1.479 (3)	C16—H16b	0.96
N2—C3	1.474 (2)	C17—H17a	0.96
N2—C18	1.470 (2)	С17—Н17Ь	0.96
C1—H1a	0.96	С17—Н17с	0.96
C1—H1b	0.96	C18—C19	1.514 (2)

C2—C3	1.501 (3)	C18—H18a	0.96
C2—C7	1.518 (2)	C18—H18b	0.96
С2—Н2	0.96	C19—C20	1.390 (3)
C3—C4	1.522 (3)	C19—C24	1.402 (3)
С3—Н3	0.96	C20—C21	1.396 (2)
C4—C5	1.533 (2)	С20—Н20	0.96
C4—H4a	0.96	C21—C22	1.396 (3)
C4—H4b	0.96	C21—C25	1.481 (3)
C5—C6	1.529 (3)	C22—C23	1.380 (3)
С5—Н5а	0.96	С22—Н22	0.96
C5—H5b	0.96	C23—C24	1.391 (2)
C6—C7	1.539 (3)	С23—Н23	0.96
С6—Н6а	0.96	C26—C27	1.505 (2)
C6—H6b	0.96	C26—H26a	0.96
С7—Н7а	0.96	C26—H26b	0.96
С7—Н7b	0.96	C27—H27a	0.96
C8—C9	1.512 (3)	С27—Н27b	0.96
C8—H8a	0.96	С27—Н27с	0.96
C15—O2—C16	116.06 (17)	C10—C11—C15	117.93 (18)
С14—О3—Н3о	102.3 (13)	C12—C11—C15	122.6 (2)
C25—O5—C26	117.08 (16)	C11—C12—C13	120.4 (2)
С24—О6—Н6о	103.4 (18)	С11—С12—Н12	119.8207
C1—N1—C2	105.79 (16)	C13—C12—H12	119.8195
C1—N1—C8	113.67 (13)	C12—C13—C14	119.71 (19)
C2—N1—C8	114.09 (16)	C12—C13—H13	120.1478
C1—N2—C3	102.83 (14)	C14—C13—H13	120.1472
C1—N2—C18	112.75 (16)	O3—C14—C9	120.36 (19)
C3—N2—C18	114.62 (13)	O3—C14—C13	118.70 (18)
N1—C1—N2	106.30 (15)	C9—C14—C13	120.94 (16)
N1—C1—H1a	109.4712	O1—C15—O2	123.33 (17)
N1—C1—H1b	109.4709	O1—C15—C11	124.4 (2)
N2—C1—H1a	109.4716	O2-C15-C11	112.25 (18)
N2—C1—H1b	109.4715	O2—C16—C17	112.13 (19)
H1a—C1—H1b	112.4688	O2—C16—H16a	109.4709
N1—C2—C3	101.91 (15)	O2—C16—H16b	109.4712
N1—C2—C7	116.25 (17)	С17—С16—Н16а	109.4713
N1—C2—H2	110.6306	C17—C16—H16b	109.4715
C3—C2—C7	110.74 (14)	H16a—C16—H16b	106.6803
С3—С2—Н2	116.1453	С16—С17—Н17а	109.4706
С7—С2—Н2	101.7775	С16—С17—Н17b	109.471
N2—C3—C2	100.86 (13)	C16—C17—H17c	109.4713
N2—C3—C4	116.93 (16)	H17a—C17—H17b	109.4711
N2—C3—H3	110.9593	H17a—C17—H17c	109.4713
C2—C3—C4	110.85 (17)	H17b—C17—H17c	109.4722
С2—С3—Н3	117.026	N2-C18-C19	111.38 (14)
С4—С3—Н3	100.9923	N2—C18—H18a	109.4715
C3—C4—C5	106.90 (17)	N2—C18—H18b	109.4713
C3—C4—H4a	109.4713	C19—C18—H18a	109.4707
C3—C4—H4b	109.4714	C19—C18—H18b	109.4714

C5—C4—H4a	109.4711	H18a—C18—H18b	107.4978
C5—C4—H4b	109.471	C18—C19—C20	121.07 (17)
H4a—C4—H4b	111.9296	C18—C19—C24	120.63 (17)
C4—C5—C6	112.75 (15)	C20—C19—C24	118.26 (15)
C4—C5—H5a	109.4716	C19—C20—C21	121.41 (18)
C4—C5—H5b	109.4711	С19—С20—Н20	119.2941
С6—С5—Н5а	109.4709	C21—C20—H20	119.2942
С6—С5—Н5b	109.4716	C20—C21—C22	119.27 (18)
H5a—C5—H5b	105.9755	C20—C21—C25	118.64 (17)
C5—C6—C7	112.22 (17)	C22—C21—C25	122.08 (15)
С5—С6—Н6а	109.4716	C21—C22—C23	120.05 (15)
С5—С6—Н6b	109.4709	C21—C22—H22	119.9737
С7—С6—Н6а	109.4709	C23—C22—H22	119.9726
С7—С6—Н6b	109.4708	C22—C23—C24	120.36 (19)
Н6а—С6—Н6b	106.5811	С22—С23—Н23	119.8209
C2—C7—C6	106.70 (17)	С24—С23—Н23	119.8211
С2—С7—Н7а	109.4713	O6—C24—C19	121.35 (14)
С2—С7—Н7ь	109.4711	O6—C24—C23	118.01 (18)
С6—С7—Н7а	109.4719	C19—C24—C23	120.64 (19)
С6—С7—Н7ь	109.4712	04—C25—O5	123.08 (18)
H7a—C7—H7b	112.1028	O4—C25—C21	125.33 (15)
N1—C8—C9	111.39 (17)	O5—C25—C21	111.58 (16)
N1—C8—H8a	109.4707	O5—C26—C27	106.08 (17)
N1—C8—H8b	109.4706	O5—C26—H26a	109.4715
С9—С8—Н8а	109.4718	O5—C26—H26b	109.4715
С9—С8—Н8b	109.4714	C27—C26—H26a	109.4715
H8a—C8—H8b	107.4817	C27—C26—H26b	109.4709
C8—C9—C10	122.19 (18)	H26a—C26—H26b	112.6645
C8—C9—C14	119.30 (15)	С26—С27—Н27а	109.4704
C10-C9-C14	118.4 (2)	C26—C27—H27b	109.4712
C9—C10—C11	121.07 (19)	С26—С27—Н27с	109.4714
С9—С10—Н10	119.4657	H27a—C27—H27b	109.4716
C11—C10—H10	119.4663	H27a—C27—H27c	109.4708
C10-C11-C12	119.46 (16)	H27b—C27—H27c	109.4719
N1—C2—C3—N2	-45.57 (16)	C20—C21—C25—O4	3.4 (3)
C7—C2—C3—C4	65.6 (2)	C15—O2—C16—C17	-86.5 (2)
C10-C11-C15-O1	0.9 (3)	C25—O5—C26—C27	-178.97 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3o…N1	0.89 (3)	1.82 (3)	2.663 (2)	156.9 (19)
O6—H6o…N2	0.91 (2)	1.82 (3)	2.669 (2)	154 (3)
C2—H2···O1 ⁱ	0.96	2.58	3.362 (2)	138
C3—H3···O4 ⁱⁱ	0.96	2.57	3.436 (2)	151
C8—H8b···O1 ⁱ	0.96	2.57	3.336 (2)	137
C22—H22···O3 ⁱⁱⁱ	0.96	2.44	3.351 (2)	159
$\mathbf{C}_{\text{constructions}}$ and $\mathbf{d}_{\text{const}}(i)$ and 1 and 1 and 1 and 1	-11 (iii) -1 -1	_		

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y-1, z.

Fig. 3